Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Appl Toxicol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730557

RESUMO

In a chemical mass casualty incident requiring skin decontamination, dry removal using absorbent materials may be beneficial to enable immediate decontamination. The efficacy of absorbent materials has therefore been evaluated, alone or procedures including both dry and wet decontamination, following skin exposure to two low volatile toxic chemicals using an in vitro human skin penetration model. Additionally, removal using active carbon wipes was evaluated with or without the Dahlgren Decon solution. All dry decontamination procedures resulted in a significantly decreased skin penetration rate of the industrial chemical 2-butoxyethanol compared to the control without decontamination. Wet decontamination following dry absorption significantly improved the efficacy compared to dry removal alone. Dry decontamination post-exposure to the chemical warfare nerve agent VX showed no decontamination efficacy. However, dry and wet decontamination resulted in a decreased agent skin penetration rate during the last hour of the experiment. At -15°C, significantly reduced VX skin penetration rates were demonstrated for both dry decontamination alone and the dry and wet decontamination procedure. The Dahlgren Decon solution significantly reduced the amount of VX penetrating the skin, but the active carbon wipe alone did not impact the skin penetration rate. In conclusion, absorbent materials are beneficial for the removal of low-volatile chemicals from the skin, but the degree of efficacy varies between chemicals. Despite the variability, immediate dry decontamination using available absorbent materials prior to wet decontamination is recommended as a general procedure for skin decontamination. The procedure should also be prioritized in cold-weather conditions to prevent patient hypothermia.

2.
Toxicol In Vitro ; 87: 105539, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539105

RESUMO

In mass casualty incidents including hazardous chemical skin exposure, decontamination is the primary intervention to avoid systemic uptake of the toxic compound. The protocol needs to be both simple and efficient to enable a rapid response and avoid delay of patient management. In the present study, decontamination strategies included in the initial operational response were evaluated following human skin exposure in vitro to four different contaminants. Results demonstrated that the efficacy of selected decontamination procedures was highly dependent on the chemical contaminant used. Dry removal of the sulfur mustard simulant methyl salicylate prior to wet decontamination was found beneficial compared to wet decontamination alone. Rapidly initiated wet decontamination was more efficient compared to dry and wet removal of the industrial chemical 2-butoxyethanol and the nerve agent tabun. Following VX-exposure, all wet decontamination procedures resulted in increased agent penetration compared to the control. In conclusion, challenges in establishing simple and efficient decontamination procedures for a broad-spectrum of chemicals have been demonstrated. The impact of including a dry removal step during decontamination was evidently agent specific. Despite the variation in efficacy, immediately initiated dry removal may facilitate patient management until wet decontamination resources are available and to reduce the risk of secondary contamination.


Assuntos
Substâncias para a Guerra Química , Incidentes com Feridos em Massa , Gás de Mostarda , Agentes Neurotóxicos , Humanos , Descontaminação/métodos , Pele , Gás de Mostarda/toxicidade , Substâncias para a Guerra Química/toxicidade
3.
Chem Biol Interact ; 364: 110061, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872047

RESUMO

Exposure to highly toxic organophosphorus compounds causes inhibition of the enzyme acetylcholinesterase resulting in a cholinergic toxidrome and innervation of receptors in the neuromuscular junction may cause life-threatening respiratory effects. The involvement of several receptor systems was therefore examined for their impact on bronchoconstriction using an ex vivo rat precision-cut lung slice (PCLS) model. The ability to recover airways with therapeutics following nerve agent exposure was determined by quantitative analyses of muscle contraction. PCLS exposed to nicotine resulted in a dose-dependent bronchoconstriction. The neuromuscular nicotinic antagonist tubocurarine counteracted the nicotine-induced bronchoconstriction but not the ganglion blocker mecamylamine or the common muscarinic antagonist atropine. Correspondingly, atropine demonstrated a significant airway relaxation following ACh-exposure while tubocurarine did not. Atropine, the M3 muscarinic receptor antagonist 4-DAMP, tubocurarine, the ß2-adrenergic receptor agonist formoterol, the Na+-channel blocker tetrodotoxin and the K+ATP-channel opener cromakalim all significantly decreased airway contractions induced by electric field stimulation. Following VX-exposure, treatment with atropine and the Ca2+-channel blocker magnesium sulfate resulted in significant airway relaxation. Formoterol, cromakalim and magnesium sulfate administered in combinations with atropine demonstrated an additive effect. In conclusion, the present study demonstrated improved airway function following nerve agent exposure by adjunct treatment to the standard therapy of atropine.


Assuntos
Broncoconstrição , Agentes Neurotóxicos , Acetilcolinesterase , Animais , Atropina/farmacologia , Cromakalim/farmacologia , Estimulação Elétrica , Fumarato de Formoterol/farmacologia , Sulfato de Magnésio/farmacologia , Antagonistas Muscarínicos/farmacologia , Contração Muscular , Agentes Neurotóxicos/farmacologia , Nicotina/farmacologia , Ratos , Tubocurarina/farmacologia
4.
J Appl Toxicol ; 42(6): 961-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34850419

RESUMO

Skin decontamination in cold weather temperatures might be challenging due to the aggravating circumstances. However, no information is available on the efficacy of commonly used procedures in winter conditions. Therefore, the efficacy of the reactive skin decontamination lotion (RSDL) and soapy water decontamination following skin exposure to the nerve agent VX was evaluated at three ambient air temperatures (-5°C, -15°C and room temperature). Experiments were performed in vitro using human dermatomed skin. The ability of RSDL to degrade VX at the three different air temperatures was separately evaluated. The ambient air temperature in experiments without decontamination did not influence the penetration rate of VX through skin. RSDL decontamination was highly efficient in removing VX from skin when performed in all three ambient temperatures, despite the slower agent degradation rate of VX at the lower temperatures. Decontamination with soapy water at RT resulted in an increased skin penetration of VX compared with the control without decontamination; however, in colder temperatures the VX skin penetration was similar to the corresponding control without decontamination. At RT, dry removal prior to washing with soapy water did not improve decontamination of VX compared with washing solely with soapy water. This study demonstrated high efficacy of RSDL decontamination following skin exposure to VX also at cold temperatures. The previously reported 'wash-in' effect of soapy water on VX skin penetration was reduced at cold temperatures. Altogether, this study found a scientific basis to establish guidelines for skin decontamination of chemical casualties at cold weather temperatures.


Assuntos
Substâncias para a Guerra Química , Compostos Organotiofosforados , Temperatura Baixa , Descontaminação/métodos , Humanos , Pele , Sabões , Temperatura , Água/metabolismo , Tempo (Meteorologia)
5.
Cutan Ocul Toxicol ; 40(2): 95-102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759679

RESUMO

AIM OF THE STUDY: Following percutaneous exposure to the nerve agent VX, the remaining intact agent within the skin after decontamination is of great concern. Consequently, this leads to prolonged agent release to the blood circulation resulting in sustained intoxication, which may complicate the medical management. The decontamination procedure used should therefore possess the ability for agent removal both on and within the skin. The efficacy of three decontamination procedures was evaluated by measuring VX and the primary degradation product ethyl methyl phosphonic acid (EMPA) penetrated through human skin and the amount remaining within the skin. MATERIALS AND METHODS: Decontamination was initiated 5 min post-exposure to VX on human dermatomed skin. Experiments were conducted using an in vitro skin penetration model and the amount remaining within the skin was determined by combining the tape-stripping technique and acetylcholinesterase activity measurements. RESULTS: In control experiments without decontamination, higher amounts of VX were recovered in the deeper layers of skin compared to EMPA, which was primarily located in the stratum corneum. Both Reactive Skin Decontamination Lotion (RSDL) and the RSDL training kit (TRSDL) significantly reduced the amount of VX within the skin and decreased the penetration through the skin. However, the degradation ability of RSDL was demonstrated to be beneficial by the reduction of intact agents remaining in the skin compared to TRSDL without agent degradation capability. Soapy water decontamination caused a "wash-in" effect of VX with decreased agent amounts within stratum corneum but increased the amount VX penetrated through the skin. CONCLUSION: Efficient skin decontamination of VX requires skin decontaminants reaching deeper layers of the skin, and that both absorption and degradation properties are important. In addition, the "wash-in" effect by using soapy water may enhance VX release to the blood circulation.


Assuntos
Substâncias para a Guerra Química , Descontaminação/métodos , Compostos Organotiofosforados/administração & dosagem , Absorção Cutânea , Pele/metabolismo , Humanos
6.
Toxicol Lett ; 339: 32-38, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33370593

RESUMO

Metal-organic frameworks (MOFs) have shown promising properties for removal of chemical warfare agents, in particular for material decontamination and functionalized fabrics. The MOF-properties could also be beneficial for skin decontamination, especially when exposed to highly toxic and low volatile nerve agents. In such exposures, efficient decontamination is crucial for adequate medical management. In the present study, seven zirconium-based MOFs were evaluated for their ability to degrade VX and subsequently tested in vitro for decontamination of VX on human dermatomed skin. Of the MOFs evaluated, MOF-808 showed the greatest ability to degrade VX in an alkaline buffer with complete degradation of VX within 5 min. PCN-777, Zr-NDC and NU-1000 displayed degradation half-lives of approximately 10 min. When including MOF-808 in a skin friendly carrier with slightly acidic pH, a decreased agent degradation rate was observed, requiring over 24 h to reach complete degradation. In skin decontamination experiments, MOF-808 enhanced the efficacy compared to the carrier alone, essentially by improved agent absorption. Adding MOF-808 to Reactive Skin Decontamination Lotion (RSDL) did not improve the high effectiveness of RSDL alone. The present study showed that including MOF in skin decontamination lotions could be beneficial. Further studies should include optimizing the particulates and formulations.


Assuntos
Substâncias para a Guerra Química/toxicidade , Descontaminação/métodos , Estruturas Metalorgânicas/uso terapêutico , Agentes Neurotóxicos/toxicidade , Compostos Organotiofosforados/toxicidade , Pele/efeitos dos fármacos , Zircônio/uso terapêutico , Células Cultivadas/efeitos dos fármacos , Substâncias para a Guerra Química/metabolismo , Humanos , Agentes Neurotóxicos/metabolismo , Compostos Organotiofosforados/metabolismo , Creme para a Pele
7.
Toxicol In Vitro ; 67: 104914, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32540164

RESUMO

Unintentional exposure to potent synthetic opioids during law enforcement seizures and rescue operations can potentially result in incapacitating effects or life-threatening respiratory depression. The hazard comes mainly from inhalation exposure, however, the skin contact risk should be considered. In the present study, the skin penetration of fentanyl and the efficacy of different decontamination protocols were evaluated by applying two forms of fentanyl on dermatomed human skin mounted in a diffusion cell. Studies were performed on dry skin or skin moistened by water, sweat or hand sanitizer. The free base of fentanyl displayed greater skin penetration ability than the hydrochloride salt and a higher steady state penetration rate of fentanyl in solution compared to powder on dry skin. Sweaty skin increased the penetration rate, both when applied in solution and as powder. The hand sanitizer increased skin penetration of the free base fentanyl but not the hydrochloride salt. Of the evaluated decontamination procedures, only soapy water demonstrated a general efficacy. In conclusion, the skin contact hazard of fentanyl is highly dependent on the exposure conditions and contamination density. The risk for physiological effects of fentanyl is assessed to occur only at very high exposures on sweaty skin. In such events, skin decontamination using soap and water is estimated to be a sufficient decontamination procedure.


Assuntos
Analgésicos Opioides , Descontaminação/métodos , Fentanila , Absorção Cutânea , Higienizadores de Mão , Humanos , Técnicas In Vitro , Pós , Sais , Pele/metabolismo , Sabões , Suor , Água
8.
Cutan Ocul Toxicol ; 39(2): 134-142, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32216482

RESUMO

Aim of the study: Following exposure to toxic chemicals, skin uptake is a potential route of intoxication. Therefore, efficient methods for rapid skin decontamination to mitigate systemic effects are of utmost importance. In operational guidelines, skin decontamination is recommended to be performed by dry absorption and washing with water or soapy water. In the present study, evaluation of decontamination efficacy using water or soapy water was performed for five chemicals, three toxic industrial chemicals and two simulants for chemical warfare agents.Materials and methods: Decontamination was initiated at time points 5, 15, 45 and 120 min after exposure in order to evaluate the time window for efficient decontamination. Experiments were conducted utilizing an in vitro skin penetration model to allow exposure of toxic chemicals on human skin. Results: For all test substances, it was clearly demonstrated that decontamination had greater efficacy when initiated at the earliest time-point while decontamination after 120 min was less efficient. Adding soap to the water showed no significant improvement for any of the tested substances.Conclusion: These results are of reledvance for the development of efficient operational decontamination procedures.


Assuntos
Descontaminação/métodos , Substâncias Perigosas/administração & dosagem , Sabões/administração & dosagem , Água/administração & dosagem , Acrilonitrila/administração & dosagem , Butilaminas/administração & dosagem , Substâncias para a Guerra Química , Etilenoglicóis/administração & dosagem , Humanos , Técnicas In Vitro , Lactatos/administração & dosagem , Salicilatos/administração & dosagem , Pele/efeitos dos fármacos , Absorção Cutânea
9.
Inhal Toxicol ; 31(3): 107-118, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31039646

RESUMO

Objective: To establish a rat model with respiratory and pulmonary responses caused by inhalation exposure to non-lethal concentrations of ammonia (NH3) that can be used for evaluation of new medical countermeasure strategies for NH3-induced acute lung injury (ALI). This is of great value since no specific antidotes of NH3-induced injuries exist and medical management relies on supportive and symptomatically relieving efforts. Methods: Female Sprague-Dawley rats (8-9 weeks old, 213g ± 2g) were exposed to NH3 using two different exposure regimens; nose-only inhalation or intratracheal instillation. The experiment was terminated 5 h, 24 h, 14 and 28 days post-exposure. Results: Nose-only inhalation of NH3 (9000-15 000 ppm) resulted in increased salivation and labored breathing directly post-exposure. Exposure did not increase inflammatory cells in bronchoalveolar lavage fluid but exposure to 12 000 ppm NH3 during 15 min reduced body weight and induced coagulation abnormalities by increasing serum fibrinogen levels. All animals were relatively recovered by 24 h. Intratracheal instillation of NH3 (1%) caused early symptoms of ALI including airway hyperresponsiveness, neutrophilic lung inflammation and altered levels of coagulation factors (increased fibrinogen and PAI-1) and early biomarkers of ALI (IL-18, MMP-9, TGFß) which was followed by increased deposition of newly produced collagen 14 days later. Histopathology analysis at 5 h revealed epithelial desquamation and that most lesions were healed after 14 days. Conclusions: This study demonstrates that intratracheal instillation can reproduce several early hallmarks of ALI. Our findings therefore support that the intratracheal instillation exposure regimen can be used for new medical countermeasure strategies for NH3-induced ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Amônia/administração & dosagem , Amônia/toxicidade , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Feminino , Fibrina/metabolismo , Fibrinogênio/análise , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Nariz , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Traqueia
10.
Pharmaceutics ; 11(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939753

RESUMO

Diseases in the respiratory tract rank among the leading causes of death in the world, and thus novel and optimized treatments are needed. The lungs offer a large surface for drug absorption, and the inhalation of aerosolized drugs are a well-established therapeutic modality for local treatment of lung conditions. Nanoparticle-based drug delivery platforms are gaining importance for use through the pulmonary route. By using porous carrier matrices, higher doses of especially poorly soluble drugs can be administered locally, reducing their side effects and improving their biodistribution. In this study, the feasibility of mesoporous silica particles (MSPs) as carriers for anti-inflammatory drugs in the treatment of airway inflammation was investigated. Two different sizes of particles on the micron and nanoscale (1 µm and 200 nm) were produced, and were loaded with dexamethasone (DEX) to a loading degree of 1:1 DEX:MSP. These particles were further surface-functionalized with a polyethylene glycol⁻polyethylene imine (PEG⁻PEI) copolymer for optimal aqueous dispersibility. The drug-loaded particles were administered as an aerosol, through inhalation to two different mice models of neutrophil-induced (by melphalan or lipopolysaccharide) airway inflammation. The mice received treatment with either DEX-loaded MSPs or, as controls, empty MSPs or DEX only; and were evaluated for treatment effects 24 h after exposure. The results show that the MEL-induced airway inflammation could be treated by the DEX-loaded MSPs to the same extent as free DEX. Interestingly, in the case of LPS-induced inflammation, even the empty MSPs significantly down-modulated the inflammatory response. This study highlights the potential of MSPs as drug carriers for the treatment of diseases in the airways.

11.
Clin Toxicol (Phila) ; 56(12): 1185-1194, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29923422

RESUMO

CONTEXT: Inhalation of sulfur dioxide (SO2) affects the lungs and exposure to high concentrations can be lethal. The early pulmonary response after inhaled SO2 involves tissue injury, acute neutrophilic lung inflammation and airway hyperresponsiveness (AHR). In rats, long-term pulmonary fibrosis is evident 14 days post-exposure as indicated by analysis of collagen deposition in lung tissue. Early treatment with a single dose of dexamethasone (DEX,10 mg/kg) significantly attenuates the acute inflammatory response in airways. However, this single DEX-treatment is not sufficient for complete protection against SO2-induced injuries. METHODS: Female Sprague-Dawley rats exposed to SO2 (2200 ppm, nose-only exposure, 10 min) were given treatments (1, 5 and 23 h after SO2-exposure) with the anti-fibrotic and anti-inflammatory substance Pirfenidone (PFD, 200 mg/kg) or DEX (10 mg/kg) to evaluate whether the inflammatory response, AHR and lung fibrosis could be counteracted. RESULTS: Both treatment approaches significantly reduced the total leukocyte response in bronchoalveolar lavage fluid and suppressed pulmonary edema. In contrast to DEX-treatment, PFD-treatment reduced the methacholine-induced AHR to almost control levels and partially suppressed the acute mucosal damage whereas multiple DEX-treatment was the only treatment that reduced collagen formation in lung tissue. CONCLUSIONS: To enable an accurate extrapolation of animal derived data to humans, a detailed understanding of the underlying mechanisms of the injury, and potential treatment options, is needed. The findings of the present study suggest that treatments with the capability to reduce both AHR, the inflammatory response, and fibrosis are needed to achieve a comprehensive mitigation of the acute lung injury caused by SO2.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Poluentes Ocupacionais do Ar , Anti-Inflamatórios/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Dióxido de Enxofre , Lesão Pulmonar Aguda/fisiopatologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Colágeno/metabolismo , Dexametasona/uso terapêutico , Feminino , Contagem de Leucócitos , Edema Pulmonar/tratamento farmacológico , Piridonas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória
12.
Toxicol Appl Pharmacol ; 309: 44-54, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27586366

RESUMO

We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1ß and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-ß expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-ß1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Hiper-Reatividade Brônquica/induzido quimicamente , Cloro/toxicidade , Modelos Animais de Doenças , Pneumonia/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar , Cloro/administração & dosagem , Dexametasona/uso terapêutico , Feminino , Exposição por Inalação , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley
13.
Toxicology ; 368-369: 28-36, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27565714

RESUMO

Inhalation of high concentrations of sulfur dioxide (SO2) affects the lungs and can be immediately dangerous to life. We examined the development of acute and long-term effects after exposure of SO2 in Sprague-Dawley rats, in particular inflammatory responses, airway hyperresponsiveness (AHR) and lung fibrosis. Animals were subjected to a single exposure of 2200ppm SO2 during 10min and treated with a single dose of the anti-inflammatory corticosteroid dexamethasone 1h following exposure. Exposed rats showed labored breathing, decreased body-weight and an acute inflammation with neutrophil and macrophage airway infiltrates 5h post exposure. The acute effects were characterized by bronchial damage restricted to the larger bronchi with widespread injured mucosal epithelial lining. Rats displayed hyperreactive airways 24h after exposure as indicated by increased methacholine-induced respiratory resistance. The inflammatory infiltrates remained in lung tissue for at least 14 days but at the late time-point the dominating granulocyte types had changed from neutrophils to eosinophils. Analysis of immunoregulatory and pro-inflammatory cytokines in serum and airways implicated mixed macrophage phenotypes (M1/M2) and T helper cell activation of both TH1 and TH2 subtypes. Increased expression of the pro-fibrotic cytokine TGFß1 was detected in airways 24h post exposure and remained increased at the late time-points (14 and 28 days). The histopathology analysis confirmed a significant collagen deposition 14 days post exposure. Treatment with dexamethasone significantly counteracted the acute inflammatory response but was insufficient for complete protection against SO2-induced adverse effects, i.e. treatment only provided partial protection against AHR and the long-term fibrosis.


Assuntos
Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Fibrose Pulmonar/tratamento farmacológico , Dióxido de Enxofre/toxicidade , Administração por Inalação , Animais , Anti-Inflamatórios/farmacologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Dexametasona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Cloreto de Metacolina/toxicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/tratamento farmacológico , Dióxido de Enxofre/administração & dosagem , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
14.
Toxicology ; 328: 40-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25497111

RESUMO

Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated.


Assuntos
Acetilcisteína/farmacologia , Lesão Pulmonar Aguda/prevenção & controle , Corticosteroides/farmacologia , Antioxidantes/farmacologia , Hiper-Reatividade Brônquica/prevenção & controle , Cloro , Dexametasona/farmacologia , Pulmão/efeitos dos fármacos , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Anti-Inflamatórios/farmacologia , Hiper-Reatividade Brônquica/sangue , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citoproteção , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Fibrinogênio/metabolismo , Gases , Exposição por Inalação , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/sangue , Fatores de Tempo
15.
Toxicol Appl Pharmacol ; 271(2): 168-74, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707766

RESUMO

Chlorine (Cl2) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl2-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200ppm Cl2 during 15min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24h or 14days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100mg/kg) was administered intraperitoneally 1, 3, 6, or 12h following Cl2 exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1h was dose-dependent; high-dose significantly reduced acute airway inflammation (100mg/kg) but not treatment with the relatively low-dose (10mg/kg). Both doses reduced AHR 14days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl2 exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl2 exposure.


Assuntos
Corticosteroides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Cloro/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Colágeno/metabolismo , Dexametasona/uso terapêutico , Feminino , Exposição por Inalação , Camundongos , Camundongos Endogâmicos BALB C , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Mecânica Respiratória/efeitos dos fármacos
16.
Toxicology ; 301(1-3): 66-71, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776411

RESUMO

CONTEXT: Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. OBJECTIVE: In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. METHODS: C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. RESULTS: Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. CONCLUSION: Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Melfalan/toxicidade , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar , Colágeno/metabolismo , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Feminino , Glucocorticoides/administração & dosagem , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Cloreto de Metacolina/administração & dosagem , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fatores de Tempo
17.
Toxicology ; 280(3): 88-97, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21129433

RESUMO

Low-dose exposure of alkylating mustard gas causes long-term respiratory complications characterized by bronchitis and lung fibrosis. In this study, we utilized a mouse model for lung exposure of the nitrogen mustard melphalan, in order to define early and late events in the pathogenesis such as expression of pro-inflammatory cytokines, recruitment of inflammatory cells to airways and late-phase fibrosis. We investigated the roles of different T lymphocyte subsets on the inflammatory response by using knockout mice lacking either the genes expressing T cell receptor (TCR)αß or TCRγδ, and compared the responsiveness with that of wild type mice and double knockout mice completely deficient in T cells. Exposure to melphalan induced an early burst of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-23 in airways, followed by extensive infiltration of neutrophils in the lung tissue and airways within 24h. The acute phase was followed by a sustained lymphocytic response that persisted for at least 14 days with resulting lung fibrosis. Engagement of T lymphocytes, particularly the γδ T cell subset, was crucial both for the acute cytokine and neutrophil response and for the late-phase lung fibrosis as indicated by the lack of response in γδ T cell deficient mice. Our data demonstrate that T lymphocytes play a prominent role in the pathogenesis of long-term lung injuries caused by strong alkylating agents.


Assuntos
Brônquios/patologia , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/crescimento & desenvolvimento , Mediadores da Inflamação/toxicidade , Exposição por Inalação/efeitos adversos , Melfalan/toxicidade , Linfócitos T/imunologia , Linfócitos T/patologia , Alquilantes/administração & dosagem , Alquilantes/toxicidade , Animais , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Tecido Conjuntivo/patologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/administração & dosagem , Melfalan/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T/efeitos dos fármacos , Fatores de Tempo
18.
Inhal Toxicol ; 21(11): 958-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19572781

RESUMO

The pathogenesis of lung injury by exposure to highly toxic sulfur and nitrogen mustards involves alkylating damage of the respiratory epithelium followed by an acute inflammatory response and lung edema. The acute phase is followed by long-term respiratory complications characterized by bronchitis, lung fibrosis, and airway hyperreactivity. In this study, we utilized a mouse model for airway inflammation induced by inhalation exposure to the alkylating nitrogen mustard melphalan, in order to investigate possible beneficial treatment effects by the corticosteroid dexamethasone. In addition, we investigated therapeutic efficacy of liposome-encapsuled vitamin E, an antioxidant formulation previously shown to be efficient in counteracting inflammatory conditions. Influx of inflammatory cells to airways, edema formation, and expression of different cytokines were analyzed 6 and 18 hours after exposure to melphalan. In order to evaluate long-term lung effects, we also investigated collagen deposition and accumulation of lymphocytes at 2 and 4 weeks after exposure. A single intraperitoneal injection of dexamethasone (10 mg/kg body weight) 1 hour after melphalan exposure significantly reduced interleukin (IL)-1 and IL-6 in bronchoalveolar lavage fluid (BALF) and diminished the acute airway inflammation. Our results also indicate that early single-dose treatment with dexamethasone protects against long-term effects observed 2-4 weeks after melphalan exposure, as indicated by reduced lymphocytic response in airways and decreased collagen deposition. Furthermore, our results indicate that also vitamin E (50 mg/kg) reduces acute inflammatory cell influx, and suppresses collagen formation in lung tissue, indicating that this drug could be used in combination with corticosteroids for protection against chemical-induced lung injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Dexametasona/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Vitamina E/uso terapêutico , Reação de Fase Aguda/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Líquido da Lavagem Broncoalveolar/citologia , Colágeno/metabolismo , Citocinas/biossíntese , Portadores de Fármacos , Feminino , Lipossomos , Lesão Pulmonar/patologia , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Edema Pulmonar/patologia , Edema Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Vitamina E/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA